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Abstract
A new method of simulation of the dynamics of charged colloidal
suspensions is formulated that is based on the fluid particle dynamics method
(Tanaka and Araki 2000 Phys. Rev. Lett. 85 1338) so as to incorporate the
electrohydrodynamic interactions properly. The fluid particle approximation
allows us to treat dynamic coupling among motions of the three relevant
elements of charged colloidal suspensions, i.e., colloidal particles, ion clouds,
and liquid, in a physically natural manner. The validity of our method
is demonstrated for a problem of the electrophoretic deposition of charged
colloids. Our simulation results clearly indicate that the electro-osmotic flow
causes ‘effective’ long-range attractions between charged particles of the same
sign, as previously suggested by experiments and theories.

Liquid suspensions containing colloids are of fundamental importance in soft matter physics,
surface chemistry, biology, and industry [1–3]. In colloidal suspensions, charges play key
roles in stabilizing the dispersions and also in electrically manipulating suspended particles.
It is also widely known that they affect various kinetic phenomena of colloidal suspensions,
such as sedimentation, rheology, and electrophoresis. When one tries to study the dynamics
of charged colloidal suspensions either theoretically or numerically, the most difficult problem
arises from the complex dynamic coupling among motions of the three key elements; that
is, colloidal particles, ions, and liquid molecules. These elements are strongly interacting
with each other via both electrostatic and hydrodynamic interactions. Since these static and
dynamic interactions are both of long-range nature, we must inevitably deal with a very complex
dynamic many-body problem. Because of these difficulties, there have so far been neither
theoretical nor numerical studies that take into account the full static and dynamic coupling
among the motions of these three key elements of colloidal suspensions, despite the scientific
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and industrial importance. In most previous methods, the motion of one of these elements has
to be dropped somehow, as will be briefly reviewed below.

Molecular dynamics (MD) simulation is a straightforward method for incorporating
hydrodynamic and electrostatic interactions by explicitly solving for the motions of colloids,
ions, and liquid molecules. In principle, thus, MD simulation can be a quite powerful means
for studying the dynamic behaviour of charged colloidal suspensions, in particular, the short-
time behaviour and the local charge ordering. In reality, however, it is too costly for dealing
with the hydrodynamic motion of liquid molecules and the resulting motion of colloids and
ions. Thus, liquid molecules have so far been neglected. To improve this situation, Tanaka and
Grosberg [4] conducted a new type of MD simulation to estimate the electrophoretic mobility
of a single charged particle. In this work, the hydrodynamic effect of liquid molecules is
incorporated by explicitly dealing with many neutral particles along with ions. Although
this is an important step toward the inclusion of full hydrodynamic effects, MD simulation is
obviously not suitable for dealing with many colloidal particle systems because of the large time
separation between the motion of colloidal particles and that of ions and liquid and the resulting
enormous computational cost. Thus, the number of colloidal particles and the timescale have
to be limited. It should be noted that hydrodynamic interactions between particles play crucial
roles in the large-spatial-scale and long-timescale phenomena. Coarse graining of the problem
is, thus, essential.

Eliminating the degrees of freedom of ions and/or liquid molecules is a possible way to
improve the efficiency of simulation. Hydrodynamic interactions between colloidal particles
were incorporated by Stokesian dynamics [5, 6], which calculates the mobility matrix for
particle motion. Application of this method to charged colloidal problems can be carried out,
while keeping a sufficient numerical efficiency, by approximating electrostatic interactions by
an effective interparticle potential such as the Yukawa potential [7]. Although this can be a
quite efficient method, obviously the possible change in the spatial ion distribution cannot be
investigated by this method.

There are also efforts to incorporate many-particle features in an approximate manner. For
example, properties dependent upon particle concentration were discussed by considering a
single particle fixed in a cell with adequate boundary conditions and varying the cell size such
that the particle/cell volume ratio is equal to the particle volume fraction. Ohshima derived
a theoretical expression for electrophoretic mobility of colloidal particles in concentrated
suspensions using the cell model [8]; for a system where a single particle is fixed at the
centre of a spherical cell, the fluid velocity under an electric field was solved for. Horbach
and Frenkel [9] applied the lattice Boltzmann method (LBM) to a system of charged colloids
suspended in an electrolyte solution and estimated the effective sedimentation velocity by
solving for the gravity-induced flow of an electrolyte solution about a charged particle fixed
in a cubic cell with a periodic boundary condition. Although these methods can pick up some
important features of colloidal suspensions with a finite particle concentration, the relative
motion of the particles and the effects of the resulting hydrodynamic flow are completely
neglected.

In all these examples, hydrodynamic interactions between particles are the most serious
obstacle due to the dynamic and long-range nature. They induce strong nonlocal couplings
among all the relevant degrees of freedom of charged colloidal suspensions. To get rid of
the difficulty associated with many-body hydrodynamic interactions among solid particles, a
new simulation method (the fluid particle dynamics (FPD) method) was recently proposed for
charge-free colloidal suspensions by Tanaka and Araki [10]. Here liquid molecules are treated
as a continuum fluid. A key feature of this method is regarding a solid colloidal particle as
an undeformable fluid one of high viscosity. It is assumed that viscosity changes smoothly
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across the interface between the inner and the outer regions of each particle. Thus, we can
get rid of the solid–fluid boundary condition, which is the origin of all the difficulties. This
smooth interface approximation allows us to treat the whole colloidal system as a continuous
liquid with inhomogeneity of the viscosity, which exactly reflects the spatial distribution of
colloidal particles. Because of this feature of the FPD method, all types of hydrodynamic
motion of particles are naturally reproduced so as to minimize the viscous dissipation3. In
the fluid particle approximation, the spatial distribution of the surface charges of colloidal
particles can also be expressed as a continuous field variable4. Thus, the FPD method can
naturally be extended to incorporate electrohydrodynamic equations. In this letter, we present
a novel method of simulation of the dynamics of charged colloidal suspensions based on the
FPD method; this method can deal with the full static and dynamic coupling among colloidal
particles, ion clouds, and liquid. The continuity of the variables throughout the whole system
makes the simulation quite efficient. The validity of our method will be demonstrated for a
problem of electrophoretic deposition of charged colloids.

In the following, we explain our new simulation method. The variables relevant for
physically describing the dynamics of charged colloidal suspensions are the colloidal particle
position {�ri }, the ion distribution {Cα}, and the fluid velocity field �v. The indices i and α stand
for individual particle and ion type, respectively. We also denote the electrostatic potential as
� . In the fluid particle approximation, we regard the solid particles as fluid ones. We express
fluid particle i using a function φi(�r) as φi(�r) = [tanh{(a − |�r − �ri |)/ξ} + 1]/2, where a is the
radius of the particle and ξ is the interfacial width. For the distribution of the particles given
by {�ri }, the viscosity field can be expressed as η(�r) = ηs +

∑
i(ηc − ηs)φi (�r), where ηs is the

viscosity of the fluid surrounding particles and ηc is the viscosity inside the particle. Then the
time evolution of �v is described by the Navier–Stokes equation,

ρ
D�v
Dt

= �F − �∇ p + �∇ · η{ �∇�v + ( �∇�v)T} + �ζ , (1)

where D
Dt = ∂

∂ t + �v · �∇, ρ is the density, and �ζ is the thermal force noise. In the above, we
assume that the density of colloidal particles is the same as that of a liquid so that ρ is a constant.
Pressure p is determined such that it satisfies the incompressibility condition �∇ · �v = 0. In
the FPD method, the force �F (0)

i acting on particle i is transformed into the continuous force
field �Fi (�r) = �F (0)

i φi (�r)/
∫

d�r φi (�r), which should be included in �F in equation (1). The time
evolution of the position of particle i , �ri , is described by the average fluid velocity inside the
particle, 〈�v〉�ri = ∫

d�r �vφi/
∫

d�r φi , as
d�ri

dt
= 〈�v〉�ri . (2)

This is the framework of the original FPD model. It should be noted that the fluid particle
approximation becomes exact in the limit of ηc/ηs → ∞ and ξ/a → 0.

Now we introduce charges into the above model. Let us assume that the valence of ions
of type α with the concentration Cα is given by Zα. We define the charge density localized
in the surface region of particle i having the total charge Qi as ρi (�r) = Qiϕi(�r)/

∫
d�r ϕi(�r),

where ϕi = cosh−4{(a − |�r − �ri |)/ξ} is a function having a value only in the interfacial region
of particle i . The total charge density is then expressed as

ρe =
∑

i

ρi +
∑

α

eZαCα, (3)

3 For example, FPD method can describe both translational and rotational hydrodynamic motion of particles properly.
4 Since we use the continuous field for the surface charge of a colloidal particle and the ion clouds, our model cannot
deal with problems involving local charge ordering (beyond the Poisson–Boltzmann picture) in the present form. In
principle, however, we can study such a problem by further extending our model to treat each ion as an individual
fluid particle.
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where e is the elementary charge. The electrostatic potential � satisfies the Poisson equation,

εε0 �∇2� = −ρe, (4)

where ε is the relative dielectric constant and ε0 is the permittivity of space. The time evolution
of the ion concentration field Cα is described by

DCα

Dt
= ∂Cα

∂ t
+ �∇ · (�vCα) = −�∇ · �Jα, (5)

where �Jα = −LαCα
�∇µα is the flux of ion α induced by the gradient of the chemical potential

µα . The mobility Lα of ion α is related to the diffusion constant Dα as Dα = kBT Lα , where
kB is the Boltzmann constant and T is the temperature. The effective chemical potential µα is
expressed as

µα = kBT ln Cα + eZα� + kBTχα

∑

i

φi . (6)

Here the first term comes from the translational entropy of ions, the second one from the
electrostatic contribution, and the third one from the penalty for the ions entering the inner
region of the particles. χα is a kind of parameter describing the interaction between the ions
and the particle, which is artificially introduced to prevent the ions from penetrating into the
particles. The force field �F in equation (1) is expressed as

�F =
∑

i

�F (0)
i φi∫
d�r φi

− ρe �∇�. (7)

Here the first term stems from the direct body force �F (0)
i acting on the particles as described

before, while the second one stems from the electrostatic interaction. Note that �F (0)
i should

not contain the Coulomb interaction since that is already included in the second term. For
simplicity, we assume that the only non-electrostatic body force acting on particle i is the
following steric repulsion from the other particles:

�F (0)
i =

∑

i �= j

�f (�ri − �r j). (8)

Here �f (�r) is the repulsive part of the Lennard-Jones interaction force, �f (�r) =
−(∂/∂�r)V0[(σ/|�r |)12−(σ/|�r |)6] with |�r| < 2−1/6σ , where V0 is the strength of the potential and
σ is the range of interaction. We note that it is straightforward to include attractive interactions
such as van der Waals interactions into �F (0)

i , if necessary. Equations (1)–(8) together with
the incompressibility condition �∇ · �v = 0 compose a set of electrohydrodynamic equations of
charged colloidal suspensions. They are essentially the same as those found in the standard
textbook [1, 2], except that the motion of the fluid particles and the resulting hydrodynamic
flow are included.

To demonstrate the validity of our method, we apply it to a problem of electrophoretic
deposition in charged colloidal suspensions. This problem is quite important both scientifically
and technologically. Recently, the importance of the electrohydrodynamic interactions
is suggested in conjunction with spontaneous cluster formation of particles upon their
electrophoretic deposition onto an electrode [11–14]. The observed apparent long-range
attraction between deposited particles having an equal charge is at variance with the intuition
that equally charged particles should repel each other. The origin of such an attraction has
been attributed as the electrohydrodynamic interaction. Anderson and co-workers analysed
the electrohydrodynamic equations and calculated the flow profile about a single deposited
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particle in a dc5 external electric field [15–17]. They showed that the resulting flow is directed
toward a particle, so the flow can cause an attractive drag force on other particles.

Let us apply the above extended FPD model to the electrophoresis of charged colloids
confined between two flat electrodes facing each other. We set the spatial axis z perpendicular
to the electrodes, while the x and y axes are set parallel to them. For simplicity, we consider
a two-dimensional (2D) problem. That is, we assume that the system is uniform along the y
axis and thus the 2D circular particles that we deal with are cylinders that are forced to align
along the y axis. The bottom electrode is set at z = 0 and the top one at z = d . Thus the
gap between the two electrodes is d . We use the Dirichlet boundary condition for �v, � , and
�Jα at the electrodes: �v(z = 0) = �v(z = d) = 0, �(z = 0) = 0, �(z = d) = V , and
�Jα(z = 0) = �Jα(z = d) = 0. For Cα , we use the Neumann boundary condition: ∂Cα/∂z = 0

at z = 0 and d . We also add the term
∑

i
�fw(�ri ) to the rhs of the equation (8), where �fw is the

steric repulsion force acting on particle i from the two electrodes, whose functional form is set
to be essentially the same as �f . We use the periodic boundary condition along the x direction
as g(x + L) = g(x), where g stands for all the field variables.

To solve equations (1)–(8) numerically, we discretize the space coordinate �r and the
time variable t . In the calculation of the Navier–Stokes equation (see equation (1)), we
set the lhs to be zero (Stokes approximation). This is justified since the Reynolds number
Re = ρav/ηs is quite small for aqueous suspensions of colloids of sub-micron size. For
example, Re ∼ 10−4 for the particle of radius a = 100 nm with the electrophoretic mobility
of u = v/E ∼= 1 (µm s−1) (V cm−1)−1 under the electric field E = 103 V cm−1. Thus the
time integration should be carried out just for {�ri} and {Cα}. We calculate their time evolution
by using an explicit Euler integration for equations (2) and (5), respectively. In each time step,
� and �v are calculated using iteration methods. We calculate � by solving equation (4) using
a successive over-relaxation (SOR) scheme. For �v, on the other hand, we use a simple iteration
procedure: �v → �v + δ × [ �F − �∇ p + �∇ · η{ �∇�v + ( �∇�v)T}], where δ is a small positive constant.
We repeat this iteration until the change in �v per iteration step becomes sufficiently small. In
the calculation of �F − �∇ p + �∇ ·η{ �∇�v + ( �∇�v)T}, we carry out an inverse Fourier transformation
of T�q · [ �F + �∇ · η{ �∇�v + ( �∇�v)T}]�q [10]. Here T�q is the operator of the transverse projection in
q space, which is specially modified such that �v satisfies the non-slip boundary condition at
the walls.

In the present simulation, we fix the particle radius as a = 20 nm and the interfacial width
as ξ = 10 nm. We assume that the particles are positively charged and the amount of charge
of the particle cylinder is set to 20e per length of 10 nm. We employ 1:1 electrolyte as the
bulk fluid and assume that the ions with a negative charge are identical to the counterions of
the particles. We set T = 300 K. Although we can include the force noise term �ζ such that it
satisfies the fluctuation-dissipation theorem, here we ignore it for simplicity6: thus, there are
no random Brownian motions of particles in our simulations. The relative dielectric constant
and the viscosity of the solvent are set to be ε = 80 and ηs = 1 cP, respectively. The viscosity
of the fluid particles is set to be ηc = 50ηs, which is high enough for approximating the solid
particles [10]. The diffusion constant Dα of the ions is set to be Dα = 10−5 cm2 s−1. We
set the energetic penalty kBTχα for the ion penetrating inside the particle as χα = 10. The
spatial coordinates are discretized by the regular mesh, whose size � is the same as ξ . The
number of mesh points composing the system is Nx × Nz = 64 × 32; thus, the gap between
the electrodes is d = (Nz − 1)� = 310 nm and the repeating period in the x direction is
L = Nx� = 640 nm.

5 The detailed mechanism of the generation of the electrohydrodynamic flow is considered to differ between the dc
electrical field case [15–17] and the ac one [18, 19].
6 Note that the drift motion of a particle (∼mm s−1) in our simulation is much faster than the diffusional motion.
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Figure 1. (a) The electrostatic potential profile and (b) the total charge density around the
cylinder particle of radius a = 20 nm. The amount of charge on the cylinder is 20e per cylinder
length of 10 nm. The relative dielectric constant is ε = 80. The results for the two average
concentrations of added 1:1 electrolyte, C , are shown: C = 10−4 M (Debye length ξD

∼= 30 nm)
and C = 10−5 M (ξD

∼= 100 nm). The vertical dotted lines represent the position of the particle
surface r = a = 20 nm. Other model parameters: χα = 10 and � = ξ = 10 nm.

First we show the simulation results for the ion distribution about a charged particle in
equilibrium. Figures 1(a) and (b) show the equilibrium electrostatic potential profile � and
the total charge density ρe, respectively. They are obtained for the steady state reached by
the FPD simulation for a charged particle fixed in space. Although we use a quite large value
for the interfacial width (ξ = 10 nm) as well as a rough discretization mesh (� = 10 nm),
the profiles of � obtained are quite reasonable as long as the Debye length ξD is larger than
ξ = �. We also note that the artificial penalty term kBT χα

∑
i φi in the ion chemical potential

µα (see equation (6)) works well in preventing the ions from penetrating inside the particle;
thus, a clear electric double layer is formed around the particle.

Next we consider the kinetic process of the electrophoresis of charged particles under
the electric potential difference V between the electrodes. We initially equilibrate the ion
distribution before applying the finite V . For the electrophoresis of a single particle, we have
checked that the steady velocity v∞ of the particle is proportional to the strength of the electric
field E = V/d for the range of E from 102 to 103 V cm−1. The electrophoretic mobility
u = v∞/E estimated in these simulations is of the order of 1 (µm s−1) (V cm−1)−1, which is
consistent with the experimental values reported for charged colloids suspended in water.

Figure 2 depicts the kinetic process of the electrophoretic deposition of the two charged
particles, which are initially put close to each other in the middle of the electrodes (i.e.,
at z = d/2). Let us index the left and the right particles as i = 1 and 2, respectively.
Figure 3 shows the temporal changes in the particle separation x2 − x1 and the vertical position
z = z1 = z2 for the same simulation. During the electrophoretic migration toward the bottom
electrode, the particles first repel each other due to the electrostatic repulsion between them
(note that ξD

∼= 100 nm for this case). However, just before the particles are deposited on
the electrode, they begin to apparently attract each other. We can see in figure 2 that this
counter-intuitive behaviour is induced by the upward flow through the Debye layer around the
particles, which is driven by the electrical field. This flow causes the hydrodynamic drag force
along the bottom electrode, which pulls a particle toward another.

Thus, the apparent attractive interaction is purely of kinetic origin. The particles approach
each other when this electrically driven hydrodynamic drag force overwhelms the electrostatic
repulsion. In the final stage (see figure 2(d)), we can note that the ion concentration between
the particles becomes quite high due to the strong overlap of the Debye layers. The resulting
repulsive interaction is balanced with the electrohydrodynamic drag force in the steady state.
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Figure 2. Snapshots of the process of the electrophoretic deposition of two charged particles
placed between the electrodes. The density plot represents the counterion concentration. The
arrows indicate the velocity field. The electrodes are separated by 310 nm (d = 310 nm). The
applied voltage is V = 100 mV. The average concentration of the added salt is 10−5 M.
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Figure 3. The separation between the particles (x2 − x1) and their vertical position (z = z1 = z2)
as a function of time t in the same calculation as shown in figure 2.

We have also investigated how two deposited particles with an initial separation of 200 nm
move along the electrode to approach each other, focusing on the dependences on the salt
concentration C and the applied voltage V . The results are shown in figure 4. The stronger the
electric field applied, the faster the approach speed becomes. We can also note that the greater
the amount of salt added or the stronger the electric field applied, the shorter the interparticle
distance in the final stationary state becomes.

Let us consider what controls this approach kinetics and the final stationary state. In
this process, the electrostatic repulsion and the hydrodynamic force generated by electro-
osmotic flow are competing. The former is not effective when the interparticle separation
is larger than the Debye length ξD, since it is screened by the diffuse electric double layer
formed by the counterions. The latter is, on the other hand, caused by the convective flow
induced by the electrically driven ions, whose flow field is approximately dipolar. When the
interparticle separation r (=x2 − x1) is longer than ξD, thus, the particle velocity, which should
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Figure 4. (a) Separation distance x2 − x1 between a pair of particles on the electrode as a function
of time t for different applied voltages and salt concentrations. Initially, the separation between
the two particles is set to be 200 nm. (b) A double-logarithmic plot of the particle velocity against
x2 − x1. The solid line has a slope of −2.

be proportional to the velocity of the lateral flow, should decay as r−3 for a 3D system [13].
For a 2D system, we expect it to decay as r−2. We do indeed confirm this power law decay for
C = 10−4 M and V = 100 mV, as shown in figure 4(b). For the case of C = 10−5 M, such a
distinct power law behaviour cannot be observed except for a narrow region where x2−x1 	 ξD

(see figure 4(b)) because the Debye length (ξD
∼= 100 nm) is comparable to half of the surface

separation between the particles that we examined; for this case we have to take the effect of
the electrostatic repulsion into account and the above simple scaling argument no longer holds.
Because of the dipolar nature, the flow near the wall has a lateral component, which produces
the drag force from a particle toward another one. The strength of this flow should increase
with increasing ion flux J and Debye length ξD. The increase in the electric field E leads
to the increase in J , which should result in a faster approach speed. This is consistent with
what is shown in figure 4(a). On the other hand, the effect of the salt concentration C is subtle
since it increases J but decreases ξD. Next we consider the final steady state, which is a result
of the competition between the electro-osmotic force and the Coulomb repulsion. The above
arguments concerning the roles of E and C in the electrohydrodynamicforce should also apply
to the interparticle separation in the stationary state. In addition, we also have to consider the
fact that the increase in C weakens the electrostatic repulsion, which results in a decrease in
the final separation. Thus, we expect the interparticle separation to decrease with increasing
E and/or C , consistently with what is shown in figure 4(a). In previous studies [16, 17], the
effects of the thermal Brownian motion of particles on the approach process were discussed
while neglecting the electrostatic interaction, which we take into account here. More detailed
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studies on the dependences on C and E under the influence of thermal force noises will be
shown elsewhere.

In summary, we have developed a new simulation method to deal with the dynamics of
charged colloidal suspensions while including full hydrodynamicand electrostatic interactions
among charged colloidal particles, ion clouds, and liquid. The validity of this method has been
demonstrated for the problem of electrophoretic deposition kinetics. The electrostatic and
the hydrodynamic interactions as well as the electro-osmotic effect are naturally introduced
in the simulation. Although we have shown a two-particle simulation of a small system
size in two dimensions, it is quite straightforward for our method to treat a many-particle
system and/or a three-dimensional system. We hope that our new method will contribute to a
deeper understanding of kinetic aspects of complex many-body problems in charged colloidal
suspensions.
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and Culture, Japan (Grant-in-Aid for Scientific Research Nos 13554001 and 14204038),
respectively. We also acknowledge the OCTA2002 (http://octa.jp), whose class files are used
for solving the Poisson equation (4).

References

[1] Hunter R 1986 Foundation of Colloid Science (Oxford: Clarendon)
[2] Russel W B, Saville D A and Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University

Press)
[3] Lowen H, Allahyarov E, Likos C N, Blaak R, Dzubiella J, Jusufi A, Hoffmann N and Harreis H M 2003 J. Phys.

A: Math. Gen. 36 5827
[4] Tanaka M and Grosberg A Y 2002 Eur. Phys. J. 7 371
[5] Brady J F, Phyllips R J, Lester J C and Bossis G 1988 J. Fluid. Mech. 195 257
[6] Foss D R and Brady J F 2000 J. Fluid. Mech. 407 167
[7] Lowen H 1992 J. Phys.: Condens. Matter 4 10105
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